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Outline
 Safety and trustworthiness challenges for LLMs
 Adversarial vulnerability: LLMs can fool itself
 Hallucination: an inevitable innate limitation of LLMs
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Innate Limitations Require Substantial Efforts

 Innate limitations will not go away even if we:
• Increase the number of training samples
• Increase model expressiveness/complexities

 Two of our recent research works illustrate this:
• Adversarial vulnerability: an LLM can be prompted to fool itself
• Hallucination: inevitable for any LLM trained on input-output pairs



An LLM can Fool Itself:
A Prompt-Based Adversarial Attack

Xilie Xu, Keyi Kong, Ning Liu, Lizhen Cui, Di Wang, Jingfeng Zhang, Mohan Kankanhalli. An LLM can Fool Itself: A 
Prompt-Based Adversarial Attack. ICLR 2024.



LLM can do Zero-shot Inference

Predicted label

Ground-truth labelNegative

LLM provides 
a correct prediction.

Prompt = task description + sentence

Zero-shot inference: LLM can solve classification tasks via the prompt.



Robustness Evaluation of LLMs
 Robustness evaluation is necessary for checking whether the LLM is 

reliable before deploying LLMs in safety-critical areas.

Adversarial robustness = the classification accuracy on the adversarial test dataset 

Original test dataset Adversarial test dataset
Adversarial attacks



Adversarial Attacks in NLP

Adversarial attacks can fool the model to output wrong predictions.

Attack objective:  �𝑥𝑥 s. t. 𝑓𝑓 �𝑥𝑥 ≠ 𝑦𝑦 𝑎𝑎𝑎𝑎𝑎𝑎 �𝑥𝑥 ∈ ℬ𝜖𝜖 𝑥𝑥

Original input: 𝑥𝑥,𝑦𝑦 where 𝑥𝑥 is a sentence or a group of 
sentences. 

• ℬ𝜖𝜖 𝑥𝑥 refers to constraints to ensure the semantic meaning 
of the adversarial sentence is unchanged.

Attack guidance:
Word-level perturbation [BertAttack, EMNLP’20](https://arxiv.org/pdf/2004.09984.pdf)

• Character-level perturbation: delete/add/replace the character
• Word-level perturbation: delete/add/replace the word
• Sentence-level perturbation: paraphrasing

Character-level perturbation [TextBugger, NDSS’19](https://arxiv.org/pdf/1812.05271.pdf)

Sentence-level perturbation [AdvFever](https://arxiv.org/pdf/1903.05543.pdf)



Motivation
 The existing robustness evaluation of LLMs is computationally expensive

Test dataset White-box language models
Query

Adversarial test dataset

Adversarial attack needs to
load language models on GPUs
(large computational resource) and 
compute gradients 
(extremely time-consuming)

Target LLMs 
(e.g., ChatGPT)

Transfer to evaluate

An ensemble of Language Models

AdvGLUE++
[Wang et al. NeurIPS 2023]

AdvGLUE
[Wang et al. NeurIPS 2021]



Motivation
 The existing robustness evaluation of LLMs is computationally expensive
 The existing robustness evaluation of LLMs is ineffective

Test dataset White-box language models
Query

Adversarial test dataset

Adversarial attack needs to
load language models on GPUs
(large computational resource) and 
compute gradients 
(extremely time-consuming).

Target LLMs 
(e.g., ChatGPT)

Transfer to evaluate

An ensemble of Language Models

Adversarial samples are not specifically created for target LLMs!



Motivation
 The existing robustness evaluation of LLMs is computationally expensive
 The existing robustness evaluation of LLMs is ineffective

How to effectively and efficiently evaluate the robustness of LLMs?



Motivation
 The existing robustness evaluation of LLMs is computationally expensive
 The existing robustness evaluation of LLMs is ineffective

How to effectively and efficiently evaluate the robustness of LLMs?

We convert conventional NLP adversarial attacks into 
a prompt-based adversarial attack (PromptAttack).



PromptAttack: Prompt-Based Adversarial Attack
The original sentence “the only excitement comes when the credits finally roll and 
you get to leave the theater!” is classified as negative.

Your task is to generate a new sentence which must satisfy the following conditions:
1. Keeping the semantic meaning of the new sentence unchanged;
2. The new sentence should be classified as positive.

You can finish the task by modifying the sentence using the following guidance:
Add at most two extraneous characters to the end of the sentence.
Only output the new sentence without anything else. 

the only excitement comes when the credits finally roll and you get to leave the theatre! :)[Adversarial sample]

[Attack prompt]

An emoticon is added

Adversarial sample generated by PromptAttack successfully fools ChatGPT.



PromptAttack: Prompt-Based Adversarial Attack

The original sentence “the only excitement comes when the credits finally roll and 
you get to leave the theater!” is classified as negative.

Your task is to generate a new sentence which must satisfy the following conditions:
1. Keeping the semantic meaning of the new sentence unchanged;
2. The new sentence should be classified as positive.

You can finish the task by modifying the sentence using the following guidance:
Add at most two extraneous characters to the end of the sentence.
Only output the new sentence without anything else. 

[Attack objective]

[Original input]

[Attack guidance]



Boosting PromptAttack

PromptAttack generates adversarial data by prompting the victim LLM using an 
attack prompt composed of original input, attack objective, and attack guidance.

1. Few-shot strategy 

2. Ensemble strategy: collect an ensemble of the adversarial sample generated by PromptAttack
based on various kinds of perturbation prompts. 



Empirical Result (effectiveness)
Attack success rate (ASR) evaluated on the GLUE dataset

The ASR obtained by PromptAttack significantly outperforms AdvGLUE and AdvGLUE++.

PromptAttack-EN: PromptAttack with ensemble strategy
Prompt-Attack-FS-EN: PromptAttack with few-shot and ensemble strategies
AdvGLUE: [Wang et al., NeurIPS 2021]
AdvGLUE++: [Wang et al., NeurIPS 2023]



Empirical Result (effectiveness)
The ASR w. r. t. BERTScore threshold 

PromptAttack can generate adversarial samples of strong attack power and high fidelity. 
PromptAttack-EN: PromptAttack with ensemble strategy
Prompt-Attack-FS-EN: PromptAttack with few-shot and ensemble strategies
AdvGLUE: [Wang et al., NeurIPS 2021]
AdvGLUE++: [Wang et al., NeurIPS 2023]
BERTScore measures the sematic similarity between the generated sentence and the original sentence. The higher the BERTScore is, the generated sentence is of higher fidelity.



Empirical Result
Adversarial examples generated by PromptAttack against GPT-3.5



Summary
 Potential safety risks of deploying LLMs into safety-critical areas
 LLMs fool themselves while they are just following the prompts
 What next?

• How to strengthen LLMs, through adversarial training? How?
• How to prevent adversarial attacks?



Hallucination is Inevitable: an Innate 
Limitation of LLMs

Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli, Hallucination is Inevitable: An Innate Limitation of Large Language Models, 2024.



Hallucination: a Vaguely-Defined Problem
 Hallucination: plausible but factually incorrect or nonsensical output

• Plausible: grammatically correct and comprehensible by human beings
• Factually incorrect/nonsensical: no operational or formal definition

Conflicts with input

Self-confliction



Hallucination needs Attention
 LLMs are being used in various tasks, including sensitive ones

 LLMs are being used in sensitive tasks, including finance and medicine
 Hallucinations in these tasks are likely to be highly detrimental to users



Formal Discussion is Necessary
 Existing works are mostly empirical

• Training data: increase numbers, improve quality…
• Architecture: increase number of parameters, model ensembles…
• Input forms: Chain of Thoughts, Tree of Thoughts…

Jason Wei, X Wang, D Schuurmans, M Bosma, F Xia, E Chi, QV Le, D Zhou. Chain-of-thought prompting elicits reasoning in large language models. NeurIPS, 2022.



Formal Discussion is Necessary
 Existing works are mostly empirical

• Training data: increase numbers, improve quality…
• Architecture: increase number of parameters, model ensembles…
• Input forms: Chain of Thoughts, Tree of Thoughts…

 Theoretical perspectives
• Kalai et al.: calibrated LLMs must hallucinate
• Cotterell et al.: Transformer-based LM with infinite precision is Turing complete

Jason Wei, X Wang, D Schuurmans, M Bosma, F Xia, E Chi, QV Le, D Zhou. Chain-of-thought prompting elicits reasoning in large language models. NeurIPS, 2022.

Adam Tauman Kalai, and SS Vempala. Calibrated Language Models Must Hallucinate. STOC 2024
Ryan Cotterell, A Svete, C Meister, T Liu, L Du. Formal Aspects of Language Modeling. 2024.



Formal Discussion is Necessary
 Existing works are mostly empirical

• Training data: increase numbers, improve quality…
• Architecture: increase number of parameters, model ensembles…
• Input forms: Chain of Thoughts, Tree of Thoughts…

 Theoretical perspectives
• Kalai et al.: calibrated LLMs must hallucinate
• Cotterell et al.: Transformer-based LM with infinite precision is Turing complete

 Some questions can only be answered formally, e.g.:
• What tasks can LLMs surely be trained hallucination-free?
• Can hallucination be completely eliminated for some LLM?

Jason Wei, X Wang, D Schuurmans, M Bosma, F Xia, E Chi, QV Le, D Zhou. Chain-of-thought prompting elicits reasoning in large language models. NeurIPS, 2022.

Adam Tauman Kalai, and SS Vempala. Calibrated Language Models Must Hallucinate. 2024
Ryan Cotterell, A Svete, C Meister, T Liu, L Du. Formal Aspects of Language Modeling. 2024.



Formal Discussion is Difficult
 Hallucination: plausible but factually incorrect or nonsensical output
 Formal discussion of real-world hallucination is difficult

• Semantics is hard to formally define
• Without semantics, it is hard to define “fact” and “correctness”

https://teachlikeachampion.org/blog/a-slightly-annotated-willingham-on-science-of-reading/
https://dandypeople.com/blog/conflict-resolution-in-a-nutshell/

Correctness can be ambiguous Correctness may not be universal

https://teachlikeachampion.org/blog/a-slightly-annotated-willingham-on-science-of-reading/
https://dandypeople.com/blog/conflict-resolution-in-a-nutshell/


Formal Discussion is Possible
 We want to find a subset of the real world

• Where facts/correctness can be easily defined formally
• Contains reasonably many real-world problems



Formal Discussion is Possible
 We want to find a subset of the real world

• Where facts/correctness can be easily defined formally
• Contains reasonably many real-world problems

 The subset we choose: a formal world of computable functions 𝑓𝑓
• The fact is defined as the output of 𝑓𝑓
• A fair portion of real-world problems are computable
• Basis of computability & complexity theories (a lot of tools to use!)

0

For next-token prediction, 
𝑓𝑓 may look like:

f(“Is shark a fish or mammal?”) = “fish”
f(”What is the sum of one and two?”) = “three”



LLM in the Formal World
 LLM autoregressively completes a partial input sentence

https://livebook.manning.com/book/build-a-large-language-model-from-scratch/chapter-1/v-2/68

 LLM is a computable function ℎ that extends a string of tokens

𝑡𝑡0 𝑡𝑡1 𝑡𝑡2 𝑡𝑡3 … 𝑡𝑡𝑁𝑁−1 𝑡𝑡𝑁𝑁ℎ
𝑠𝑠 ℎ 𝑠𝑠 𝑠𝑠, ℎ 𝑠𝑠

s. t.

To satisfy some properties, e.g., being “natural”



Hallucination is Error in the Formal World
 Hallucination can be formally defined in the formal world

• Truth: given input 𝑠𝑠, 𝑓𝑓 𝑠𝑠 is the truthful “answer” to 𝑠𝑠
• False: any 𝑠𝑠′ ≠ 𝑓𝑓 𝑠𝑠 is a false ”answer” to 𝑠𝑠

 Where are “grammars” and “facts”?
• Deciding a natural language grammar is itself a computable problem
• Grammars are contained within 𝑓𝑓
• However, facts need not be

An LLM ℎ is hallucinating with respect to a ground-truth function 𝑓𝑓, if ∃𝑠𝑠 ∈ 𝒮𝒮 such 
that ℎ 𝑠𝑠 ≠ 𝑓𝑓 𝑠𝑠 .

Definition (Hallucination)



Training LLMs in the Formal World
 A generalized pipeline

ℎ 𝑖𝑖 : the state of LLM ℎ after 
being trained on 𝑠𝑠𝑖𝑖 , 𝑓𝑓 𝑠𝑠𝑖𝑖

In essence:
LLMs are trained using input-output pairs



A Fundamental Question
 We have assumed LLMs

• To have any finite computational complexity (polynomial, exponential, etc)
• To be able to consume infinitely many training samples
• Therefore, they are more powerful than any existing LLMs

 Can these LLMs be trained to be hallucination-free in any formal world?



A Fundamental Question
 We have assumed LLMs

• To have any finite computation complexity (polynomial, exponential, etc)
• To be able to consume infinitely many training samples
• Therefore, they are more powerful than any existing LLMs

 Can these LLMs be trained to be hallucination-free in any formal world?
 If yes…

• LLMs can solve a large family of reasoning tasks, theoretically

 If no…
• LLMs will inevitably hallucinate
• Need to be extremely careful about LLMs’ safety in deployment



A Fundamental Question
 A formal translation of the fundamental question

The Fundamental Question
For any ground-truth function 𝑓𝑓, using training samples 𝒯𝒯, can an LLM ℎ be trained 
such that ∀𝑠𝑠 ∈ 𝒮𝒮, ℎ 𝑠𝑠 = 𝑓𝑓 𝑠𝑠 ?



Hallucination is Inevitable
 Computably enumerable LLMs cannot learn all computable functions

Inevitability Theorem

For all computably enumerable sets of LLMs {ℎ0, ℎ1, … , }, there exists a computable 
ground truth function 𝑓𝑓, such that all ℎ𝑖𝑖

𝑗𝑗 , 𝑖𝑖, 𝑗𝑗 ∈ ℕ, will hallucinate.

 Proof for this fundamental result is surprisingly easy
• For all given sets of LLMs, show that there is an 𝑓𝑓, w.r.t. which the LLMs will 

hallucinate
• Such construction can be done using Cantor’s Diagonal Argument

ℎ𝑖𝑖
𝑗𝑗 : the state of LLM ℎ𝑖𝑖 after being trained on 𝑠𝑠𝑖𝑖 , 𝑓𝑓 𝑠𝑠𝑖𝑖

Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli, Hallucination is Inevitable: An Innate Limitation of Large Language Models, 2024.



Cantor’s Diagonal Argument
 Countable set: 

• A finite set, or 
• Can be made in one-to-one correspondence to natural numbers
• Example: the set of all even natural numbers

 Used to show that some infinite sets are uncountable
• Example: the set of all infinite-length sequences of binary digits 𝒮𝒮
• Proof:

1. (Assume & List) Assume there is a list of all the elements in 𝒮𝒮 as 𝑠𝑠1, 𝑠𝑠2, …

https://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument



Cantor’s Diagonal Argument
 Countable set: 

• A finite set, or 
• Can be made in one-to-one correspondence to natural numbers
• Example: the set of all even natural numbers

 Used to show that some infinite sets are uncountable
• Example: the set of all infinite-length sequences of binary digits 𝒮𝒮
• Proof:

1. (Assume & List) Assume there is a list of all the elements in 𝒮𝒮 as 𝑠𝑠1, 𝑠𝑠2, …
2. (Diagonalize) construct a new sequence by flipping the diagonal elements

https://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument

The ith element of the new sequence is set to be different from 
the ith element of the ith sequence in the list



Cantor’s Diagonal Argument
 Countable set: 

• A finite set, or 
• Can be made in one-to-one correspondence to natural numbers
• Example: the set of all even natural numbers

 Used to show that some infinite sets are uncountable
• Example: the set of all infinite-length sequences of binary digits 𝒮𝒮
• Proof:

1. (Assume & List) Assume there is a list of all the elements in 𝒮𝒮 as 𝑠𝑠1, 𝑠𝑠2, …
2. (Diagonalize) construct a new sequence by flipping the diagonal elements
3. (Contradiction) the new sequence is not in the list but is in 𝒮𝒮
• Therefore, such a list is not possible, and thus 𝒮𝒮 is uncountable

https://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument



Cantor’s Diagonal Argument
 Countable set: 

• A finite set, or 
• Can be made in one-to-one correspondence to natural numbers
• Example: the set of all even natural numbers

 Used to show that some infinite sets are uncountable
• Example: the set of all infinite-length sequences of binary digits 𝒮𝒮
• Proof:

1. (Assume & List) Assume there is a list of all the elements in 𝒮𝒮 as 𝑠𝑠1, 𝑠𝑠2, …
2. (Diagonalize) construct a new sequence by flipping the diagonal elements
3. (Contradiction) the new sequence is not in the list but is in 𝒮𝒮
• Therefore, such list is incorrect, and thus 𝒮𝒮 is uncountable

https://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument

How to use the same idea to show that hallucination is inevitable?



Hallucination is Inevitable (Assume & List)
Inevitability Theorem

For all computably enumerable sets of LLMs ℎ0, ℎ1, … , , there exists a computable 
ground truth function 𝑓𝑓, such that all ℎ𝑖𝑖

𝑗𝑗 , 𝑖𝑖, 𝑗𝑗 ∈ ℕ, will hallucinate.

https://en.wikipedia.org/wiki/Pairing_function

Assume: there is a set of LLMs ℎ0, ℎ1, … , , where for any 𝑓𝑓, at least one member LLM is hallucination-free



Hallucination is Inevitable (Assume & List)

 List:
• All LLMs in all states in this set can be indexed by two integers 𝑖𝑖, 𝑗𝑗 ∈ ℕ
• By 𝜋𝜋 𝑖𝑖, 𝑗𝑗 = 𝑖𝑖+𝑗𝑗 𝑖𝑖+𝑗𝑗+1

2
+ 𝑗𝑗, we can index all LLMs by a single index 𝑘𝑘 = 𝜋𝜋 𝑖𝑖, 𝑗𝑗

• So ℎ𝑖𝑖
𝑗𝑗 is enumerated as �ℎ𝑘𝑘, where 𝑘𝑘 = 𝜋𝜋 𝑖𝑖, 𝑗𝑗

Inevitability Theorem

For all computably enumerable sets of LLMs ℎ0, ℎ1, … , , there exists a computable 
ground truth function 𝑓𝑓, such that all ℎ𝑖𝑖

𝑗𝑗 , 𝑖𝑖, 𝑗𝑗 ∈ ℕ, will hallucinate.

https://en.wikipedia.org/wiki/Pairing_function

Assume: there is a set of LLMs ℎ0, ℎ1, … , , where for any 𝑓𝑓, at least one member LLM is hallucination-free



Hallucination is Inevitable (Assume & List)

 List all these LLMs’ answer on all test samples:

𝒔𝒔𝟎𝟎 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 ⋯
�ℎ0 �ℎ0 𝑠𝑠0 �ℎ0 𝑠𝑠1 �ℎ0 𝑠𝑠2 �ℎ0 𝑠𝑠3 ⋯
�ℎ1 �ℎ1 𝑠𝑠0 �ℎ1 𝑠𝑠1 �ℎ1 𝑠𝑠2 �ℎ1 𝑠𝑠3 ⋯
�ℎ2 �ℎ2 𝑠𝑠0 �ℎ2 𝑠𝑠1 �ℎ2 𝑠𝑠2 �ℎ2 𝑠𝑠3 ⋯
�ℎ3 �ℎ3 𝑠𝑠0 �ℎ3 𝑠𝑠1 �ℎ3 𝑠𝑠2 �ℎ3 𝑠𝑠3 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

By assumption, this list should contain all possible 𝑓𝑓(𝑠𝑠)

Inevitability Theorem

For all computably enumerable sets of LLMs ℎ0, ℎ1, … , , there exists a computable 
ground truth function 𝑓𝑓, such that all ℎ𝑖𝑖

𝑗𝑗 , 𝑖𝑖, 𝑗𝑗 ∈ ℕ, will hallucinate.

Assume: there is a set of LLMs ℎ0, ℎ1, … , , where for any 𝑓𝑓, at least one member LLM is hallucination-free



Hallucination is Inevitable (Diagonalize)

 Define 𝑓𝑓 by diagonalization:

Δ 𝑠𝑠 is a function that returns a 
string different from 𝑠𝑠

 Then 𝑓𝑓 is:
• Computable, as both Δ and �ℎ𝑖𝑖 are computable
• 𝑓𝑓 𝑠𝑠𝑖𝑖 ≠ �ℎ𝑖𝑖 𝑠𝑠𝑖𝑖 , 𝑖𝑖 ∈ ℕ, so 𝑓𝑓 is not in the list

𝒔𝒔𝟎𝟎 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 ⋯
�ℎ0 �𝒉𝒉𝟎𝟎 𝒔𝒔𝟎𝟎 �ℎ0 𝑠𝑠1 �ℎ0 𝑠𝑠2 �ℎ0 𝑠𝑠3 ⋯
�ℎ1 �ℎ1 𝑠𝑠0 �𝒉𝒉𝟏𝟏 𝒔𝒔𝟏𝟏 �ℎ1 𝑠𝑠2 �ℎ1 𝑠𝑠3 ⋯
�ℎ2 �ℎ2 𝑠𝑠0 �ℎ2 𝑠𝑠1 �𝒉𝒉𝟐𝟐 𝒔𝒔𝟐𝟐 �ℎ2 𝑠𝑠3 ⋯
�ℎ3 �ℎ3 𝑠𝑠0 �ℎ3 𝑠𝑠1 �ℎ3 𝑠𝑠2 �𝒉𝒉𝟑𝟑 𝒔𝒔𝟑𝟑 ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑓𝑓 𝚫𝚫 �𝒉𝒉𝟎𝟎 𝒔𝒔𝟎𝟎 𝚫𝚫 �𝒉𝒉𝟏𝟏 𝒔𝒔𝟏𝟏 𝚫𝚫 �𝒉𝒉𝟐𝟐 𝒔𝒔𝟐𝟐 𝚫𝚫 �𝒉𝒉𝟑𝟑 𝒔𝒔𝟑𝟑 ⋱

𝑓𝑓 𝑠𝑠𝑖𝑖 = Δ �ℎ𝑖𝑖 𝑠𝑠𝑖𝑖 ,∀𝑖𝑖 ∈ ℕ

Inevitability Theorem

For all computably enumerable sets of LLMs ℎ0, ℎ1, … , , there exists a computable 
ground truth function 𝑓𝑓, such that all ℎ𝑖𝑖

𝑗𝑗 , 𝑖𝑖, 𝑗𝑗 ∈ ℕ, will hallucinate.



Hallucination is Inevitable (Contradiction)

𝑓𝑓 𝑠𝑠𝑖𝑖 = Δ �ℎ𝑖𝑖 𝑠𝑠𝑖𝑖 ,∀𝑖𝑖 ∈ ℕ, is not in the list!

𝒔𝒔𝟎𝟎 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 ⋯
�ℎ0 �𝒉𝒉𝟎𝟎 𝒔𝒔𝟎𝟎 �ℎ0 𝑠𝑠1 �ℎ0 𝑠𝑠2 �ℎ0 𝑠𝑠3 ⋯
�ℎ1 �ℎ1 𝑠𝑠0 �𝒉𝒉𝟏𝟏 𝒔𝒔𝟏𝟏 �ℎ1 𝑠𝑠2 �ℎ1 𝑠𝑠3 ⋯
�ℎ2 �ℎ2 𝑠𝑠0 �ℎ2 𝑠𝑠1 �𝒉𝒉𝟐𝟐 𝒔𝒔𝟐𝟐 �ℎ2 𝑠𝑠3 ⋯
�ℎ3 �ℎ3 𝑠𝑠0 �ℎ3 𝑠𝑠1 �ℎ3 𝑠𝑠2 �𝒉𝒉𝟑𝟑 𝒔𝒔𝟑𝟑 ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑓𝑓 𝚫𝚫 �𝒉𝒉𝟎𝟎 𝒔𝒔𝟎𝟎 𝚫𝚫 �𝒉𝒉𝟏𝟏 𝒔𝒔𝟏𝟏 𝚫𝚫 �𝒉𝒉𝟐𝟐 𝒔𝒔𝟐𝟐 𝚫𝚫 �𝒉𝒉𝟑𝟑 𝒔𝒔𝟑𝟑 ⋱

By assumption, this list should contain all possible 𝑓𝑓(𝑠𝑠)

Contradiction!

Inevitability Theorem

For all computably enumerable sets of LLMs ℎ0, ℎ1, … , , there exists a computable 
ground truth function 𝑓𝑓, such that all ℎ𝑖𝑖

𝑗𝑗 , 𝑖𝑖, 𝑗𝑗 ∈ ℕ, will hallucinate.

Assume: there is a set of LLMs ℎ0, ℎ1, … , , where for any 𝑓𝑓, at least one member LLM is hallucination-free



Hallucination is Inevitable (Contradiction)

𝑓𝑓 𝑠𝑠𝑖𝑖 = Δ �ℎ𝑖𝑖 𝑠𝑠𝑖𝑖 ,∀𝑖𝑖 ∈ ℕ, is not in the list!

By assumption, this list should contain all possible 𝑓𝑓(𝑠𝑠)

Contradiction!

The assumption is false: the theorem is proved.

Inevitability Theorem

For all computably enumerable sets of LLMs ℎ0, ℎ1, … , , there exists a computable 
ground truth function 𝑓𝑓, such that all ℎ𝑖𝑖

𝑗𝑗 , 𝑖𝑖, 𝑗𝑗 ∈ ℕ, will hallucinate.

Assume: there is a set of LLMs ℎ0, ℎ1, … , , where for any 𝑓𝑓, at least one member LLM is hallucination-free



Hallucination is Inevitable (Extended)
Inevitability Theorem (Extended)

For all computably enumerable sets of LLMs {ℎ0, ℎ1, … , }, there exists a computable 
ground truth function 𝑓𝑓, such that all ℎ𝑖𝑖

𝑗𝑗 , 𝑖𝑖, 𝑗𝑗 ∈ ℕ, hallucinate on infinitely many inputs.

𝒔𝒔𝟎𝟎 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 ⋯
�ℎ0 �𝒉𝒉𝟎𝟎 𝒔𝒔𝟎𝟎 �𝒉𝒉𝟎𝟎 𝒔𝒔𝟏𝟏 �𝒉𝒉𝟎𝟎 𝒔𝒔𝟐𝟐 �𝒉𝒉𝟎𝟎 𝒔𝒔𝟑𝟑 ⋯
�ℎ1 �ℎ1 𝑠𝑠0 �𝒉𝒉𝟏𝟏 𝒔𝒔𝟏𝟏 �𝒉𝒉𝟏𝟏 𝒔𝒔𝟐𝟐 �𝒉𝒉𝟏𝟏 𝒔𝒔𝟑𝟑 ⋯
�ℎ2 �ℎ2 𝑠𝑠0 �ℎ2 𝑠𝑠1 �𝒉𝒉𝟐𝟐 𝒔𝒔𝟐𝟐 �𝒉𝒉𝟐𝟐 𝒔𝒔𝟑𝟑 ⋯
�ℎ3 �ℎ3 𝑠𝑠0 �ℎ3 𝑠𝑠1 �ℎ3 𝑠𝑠2 �𝒉𝒉𝟑𝟑 𝒔𝒔𝟑𝟑 ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑓𝑓 𝚫𝚫 �𝒉𝒉𝟎𝟎 𝒔𝒔𝟎𝟎 𝚫𝚫 �𝒉𝒉𝒋𝒋 𝒔𝒔𝒋𝒋 |𝒋𝒋 ≤ 𝟏𝟏 𝚫𝚫 �𝒉𝒉𝒋𝒋 𝒔𝒔𝒋𝒋 |𝒋𝒋 ≤ 𝟐𝟐 𝚫𝚫 �𝒉𝒉𝒋𝒋 𝒔𝒔𝒋𝒋 |𝒋𝒋 ≤ 𝟑𝟑 ⋱

𝑓𝑓 𝑠𝑠𝑖𝑖 = Δ �ℎ𝑗𝑗 𝑠𝑠𝑖𝑖 𝑗𝑗 ≤ 𝑖𝑖 ,∀𝑖𝑖 ∈ ℕ

As a result:
• �ℎ0 hallucinates on {𝑠𝑠0, 𝑠𝑠1, … }
• �ℎ1 hallucinates on {𝑠𝑠1, 𝑠𝑠2, … }
• �ℎ𝑘𝑘 hallucinates on {𝑠𝑠𝑘𝑘 , 𝑠𝑠𝑘𝑘+1, … }
• All LLMs hallucinate on infinitely 

many inputs.

Δ 𝒜𝒜 is a function that returns a string different from every 𝑠𝑠 ∈ 𝒜𝒜



Hallucination is Inevitable

 Any computable LLM will hallucinate in some formal world.
 Any formal world is a subset of the real world.
 Therefore, any computable LLM will hallucinate in the real world.

Inevitability Theorem

For all computable LLMs ℎ, there exists a computable ground truth function 𝑓𝑓, such that 
all ℎ𝑖𝑖

𝑗𝑗 , 𝑖𝑖, 𝑗𝑗 ∈ ℕ, will hallucinate.



Hallucination is Inevitable

 Any computable LLM will hallucinate in some formal world.
 Any formal world is a subset of the real world.
 Therefore, any computable LLM will hallucinate in the real world.

 Do we have real-world examples of 𝑓𝑓 for real-world LLMs? 

Inevitability Theorem

For all computable LLMs ℎ, there exists a computable ground truth function 𝑓𝑓, such that 
all ℎ𝑖𝑖

𝑗𝑗 , 𝑖𝑖, 𝑗𝑗 ∈ ℕ, will hallucinate.



Tasks where LLMs must Hallucinate
 𝑓𝑓 is a computable function not computable by LLMs
 What problems cannot be computed by real-world LLMs?

Computable
by theoretical LLMs

𝑓𝑓 constructed in our proofTotal Computable Functions

Computable
by Real-World LLMs

Theoretical 
LLMs

Real-World 
LLMs

Number of 
Training 
Samples

Any Finite 
Number

Physically 
Limited

Model 
Complexity

Any Finite 
Complexity

Physically 
Limited



Tasks where LLMs must Hallucinate
 𝑓𝑓 is a computable function not computable by LLMs
 What problems cannot be computed by real-world LLMs?



Tasks where LLMs must Hallucinate
 𝑓𝑓 is a computable function not computable by LLMs
 What problems cannot be computed by real-world LLMs?
 Polynomial-time complexity LLMs cannot compute:

• Combinatorial list: list all the strings of some length of a finite alphabet 
(exponential)

• Presburger arithmetic: the first-order theory of natural numbers with addition 
and order “<“ (double exponential)

• Boolean Satisfiability (SAT): no polynomial-time solution assuming 𝑃𝑃 ≠ 𝑁𝑁𝑁𝑁



Tasks where LLMs must Hallucinate
 𝑓𝑓 is a computable function not computable by LLMs
 What problems cannot be computed by real-world LLMs?
 Polynomial-time complexity LLMs cannot compute:

• Combinatorial list: list all the strings of some length of a finite alphabet 
(exponential)

• Presburger arithmetic: the first-order theory of natural numbers with addition 
and order “<“ (double exponential)

• Boolean Satisfiability (SAT): no polynomial-time solution assuming 𝑃𝑃 ≠ 𝑁𝑁𝑁𝑁
 General computable LLMs cannot learn all computable orders



Example: LLMs and Linear Orders
 General computable LLMs cannot learn all computable linear orders

 Linear order is an abstraction of many real-world tasks:
• Chronological order of events
• Alphabetical sorting or words
• Steps in some computer procedures
• ...



Example: LLMs and Linear Orders
 General computable LLMs cannot learn all computable linear orders

 Quick test: binary numbers with renaming of bits
• Map “1” -> “a” and “0” -> “b”
• E.g., digit “100” becomes “abb”
• Prompt: examples of orders from 02 to 100002

• Test prompt:



Example: LLMs and Linear Orders
 Two test cases:

Ω1 𝑚𝑚 : 
• Example orders from 0 to 𝑚𝑚
• Both 𝑥𝑥 and 𝑦𝑦 are in the examples, but their relation is not
• Correct answer: the order of 𝑥𝑥 and 𝑦𝑦

“Let x={string 1} and y={string 2}. What do you return?”

Ω2 𝑚𝑚 : 
• Example orders from 0 to 𝑚𝑚
• At least one of 𝑥𝑥 and 𝑦𝑦 are not in the examples
• Correct answer: the order of 𝑥𝑥 and 𝑦𝑦, or “u”



Example: LLMs and Linear Orders
 Two test cases

“Let x={string 1} and y={string 2}. What do you return?”

LLM Ω 10002 Ω 100002
Ω1 10002 Ω2 10002 Ω1 100002 Ω2 100002

llama2-70B-chat-hf ✗ ✗ ✗ ✗
gpt-3.5-turbo-16k ✗ ✗ ✗ ✗
gpt-4-0613 ✗ ✗ ✗ ✗
Gemini ✗ ✗ ✗ ✗
Claude 3 Sonnet ✗ ✗ ✗ ✗

Ω1 𝑚𝑚 : 
• Example orders from 0 to 𝑚𝑚
• Both 𝑥𝑥 and 𝑦𝑦 are in the examples, but their relation is not
• Correct answer: the order of 𝑥𝑥 and 𝑦𝑦

Ω2 𝑚𝑚 : 
• Example orders from 0 to 𝑚𝑚
• At least one of 𝑥𝑥 and 𝑦𝑦 are not in the examples
• Correct answer: the order of 𝑥𝑥 and 𝑦𝑦, or “u”



Practical Implications: Hallucination Mitigators

 The only key assumption: LLMs learn from input-output pairs
 The followings may reduce, but will not eliminate hallucination

• Larger models and more training data
• Ensemble of LLMs
• Prompt-based methods, e.g., Chain of Thoughts

 The followings will reduce, and may eliminate hallucination
• LLMs enhanced by guardrails and fences
• LLMs enhanced by external knowledge, e.g., RAG

We assumed no limitation on LLM 
complexity, size of training data, 
input forms…

Scalability remains an open problem

Methods providing information beyond input-output pairs are not 
bound by the inevitability theorem 



Practical Implications: LLMs’ Boundary and Safety

 LLMs are useful natural language models
 LLMs are not general problem solvers
 Guardrails and fences are needed

• Hallucination must happen; we do not know when and where in general
• Limit the application within realms where risks are acceptable

 Necessary to further investigate LLMs’ ability and safety boundaries
• Problems easy for humans might be difficult for LLMs, e.g., combinatorial list
• Intellectual difficulties ≠ computational difficulties

Empirically verified

The inevitability theorem



Practical Implications: LLMs’ Deployment

 LLMs should not automatically:
• Make decision on human life, rights, and properties
• Provide suggestions on sensitive topics to uninformed users

• Examples: law, medical, customer service, robotics…

https://law.stanford.edu/2024/01/11/hallucinating-law-legal-mistakes-with-large-language-models-are-pervasive/

https://sea.mashable.com/tech/31313/air-canada-loses-court-case-after-its-chatbot-hallucinated-fake-policies-to-a-customer
https://garymarcus.substack.com/p/serious-medical-error-from-perplexitys



Open Problems
 Assessment of models’ capabilities and vulnerabilities
 Assessment of tasks’ complexities and safety sensitivities
 LLM and AI’s future



Open Problems
 Assessment of models’ capabilities and vulnerabilities

• How likely will a model hallucinate?
• How easily can a model be attacked?
• How to generalize vulnerabilities detection across datasets?

 Challenges
• Test samples are finite, but attacks are evolving
• LLMs are black boxes: cannot detect vulnerabilities by code review

 Why this is important
• Efficient and principled detection of vulnerabilities
• Understand models’ weaknesses and anticipate failures



Open Problems
 Assessment of tasks’ complexities and safety boundaries

• What are the complexities of tasks? 
• For low-complexity tasks, how to ensure LLMs can complete them?
• What are the relations between task complexities and models’ vulnerabilities?

 Challenges
• Determining complexities for real-world problems are not always easy
• LLMs are black boxes: difficult to verify safety claims about them

 Why this is important
• To use LLMs wisely: let them solve only what they can really solve
• Safety must be verifiable, otherwise it is hardly trustworthy



Open Problems
 LLM and AI’s future

• Do we want one LLM/AI model for various tasks, or
• An LLM/AI model than uses different external tools for different tasks, or
• An LLM/AI model for a specific task?

 Challenges
• Complicated trade-offs between safety and utility
• Different beliefs and ideologies about AI’s future

 Why this is important
• Vulnerabilities vary when models are tasked differently
• LLMs’ future development and deployment has many serious societal 

implications



Conclusion

 LLMs are computer programs with limitations

 Innate safety challenges, like adversarial vulnerability and 
hallucination, need substantial effort to fix

 Continued empirical and formal studies on LLM safety and ability 
boundaries are both urgent and necessary

Computational 
Complexity 

Theory
LLMs’ Abilities Computability

Theory

67



Thank you!

An LLM can Fool Itself:
A Prompt-Based Adversarial Attack

Hallucination is Inevitable: 
An Innate Limitation of LLMs
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